APS Homework 1: Divide-and-Conquer
Optional Challenge Problems

Problem 1: Efficient Power Function

Let power(a,b) denote the power function a”. For example, power(5,3) =5 =125. A
trivial algorithm to implement power(a, b) is the following:

Algorithm power(a,b):
result < 1
Repeat b times:
result < result x a
Return result

Note, however, that we will always have to perform exactly b multiplication
operations. Can we compute power(a, b) using fewer than b multiplication operations?

Problem 1a: Describe a Divide-and-Conquer algorithm for computing power(a,b) using the
fewest number of multiplication operations possible. You may assume that b is an integer.

Problem 1b: Prove that the algorithm you provided in Problem la is correct for any number a
and for any integer b.

Problem 1c: As a function of a and/or b, what is the minimum number of multiplication
operations needed to compute power(a, b)?

Problem 2: Counting the Number of Os in a Sorted Binary List

A “binary list” is a list containing only Os and 1s. For example, [0, 1, 0, 0, 1] is a binary
list. A “sorted binary list” (in ascending order for this problem) is a binary list such that no
1s are ever followed by Os. For example, [0, 0, 0, 1, 1] is a sorted binary list. Given a sorted
binary list containing n elements, we can determine the number of Os as follows:

Algorithm count_O@s(nums):
For i from © to |nums|-1: # using @-based indexing
If nums[i] is 1:
Return i + 1
Return |nums|

However, for a list containing n elements, this simple algorithm requires us to look
at all n elements in the worst-case scenario (all elements are 0s), which can become slow
as n becomes large. Can we compute the number of Os in a sorted binary list by looking at
fewer than n elements?

Problem 2a: Describe a Divide-and-Conquer algorithm for determining the number of Os in
a sorted binary list by looking at the fewest number of elements possible.

Problem 2b: Prove that the algorithm you provided in Problem 2a is correct for any arbitrary
sorted binary list containing » > 0 elements.

Problem 2c: As a function of n, what is the minimum number of elements needed to be
looked at to determine the number of Os in a sorted binary list of length n?

Problem 3: Tower of Hanoi

“Tower of Hanoi” is a game in which you have 3 pegs (call them left, middle, and
right) and a tower of different-sized rings on left (Fig. 1). The rings are stacked such that,
from bottom-to-top, they go from largest-to-smallest.

Figure 1. The “Tower of Hanoi” game.

The goal of the game is to move the entire tower from left to right, but with the
following constraints: (1) you must move a single ring from one peg to another in any given
move, and (2) you cannot place a ring on top of another ring smaller than itself (but you can
place a ring on top of another ring larger than itself). In addition to simply moving the
tower from left to right, you also want to try to minimize the number of moves.

Problem 3a: What is a solution for winning the “Tower of Hanoi” game given a tower
containing » =3 rings? What about » = 4 rings?

)

Problem 3b: What is the minimum number of moves needed to win the “Tower of Hanoi’
game given a tower containing » = 3 rings? What about » = 4 rings?

Problem 3c: Describe a Divide-and-Conquer algorithm for winning the “Tower of Hanoi”
game given a tower containing » > 0 rings.

Problem 3d: Prove that the algorithm you provided in Problem 3c is correct for any arbitrary
n>0.

Problem 3e: As a function of n, what is the minimum number of moves needed to win the
“Tower of Hanoi” game given a tower containing »n > 0 rings?

